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Abstract

It is well known that diet has a large influence on our health and well-being. Diet also

plays a big role in various diseases, such as colorectal cancer. The correlation between

colorectal cancer and dietary factors has been studied widely in both the mathematical

and biological fields, often with conflicting results. The aim of this study is to develop

and analyze a stochastic model of tumor progression that focuses on how different dietary

factors influence the risk of developing colorectal cancer.
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1 Introduction

Colorectal cancer is cancer that affects the colon and/or the rectum. It is the second leading

cause of cancer death in the United States and is the third most common type of cancer,

excluding all skin cancers [7]. Understanding how diet influences one’s risk for developing

this disease is an important problem in today’s society. Dietary factors that seem to increase

risk are alcohol, red meat, and processed meat [5], [10] and one main factor that seems to

decrease risk is high vegetable intake [19]. However, it’s not clear that just avoiding red

meat, for instance, will reduce one’s cancer risk. With a mathematical model, we can study

different combinations of dietary risk factors under different scenarios.

At the molecular scale, colorectal cancer occurs through one of two different bio-

logical pathways: chromosomal instability (CIN) and microsatellite instability (MSI). CIN

accounts for 85% of all colorectal cancers and MSI accounts for 15% of all colorectal can-

cers [25]. In this project, we will focus on the CIN pathway. Using the mathematical model

of this pathway developed in [25] as a starting point, we will employ a stochastic model in

order to study the waiting time until the first cancerous tumor cell develops. Then we will

analyze how changing the mutation rates for the tumor suppressor genes (TSGs). TSGs

can act as a proxy for different dietary effects over an individual’s lifetime due to direct

correlations between diet and mutation rates. Using this information we will analyze how

diet influences the timing of colorectal cancer development.

My research will focus on translating the process of carcinogenesis with diet as a risk

factor into a mathematical model. I will use the statistical programming software R in order

to create a simulation of colorectal tumor progression across an individual’s lifetime. The

model in [25] uses a stochastic process in order to model tumor progression, which I will

utilize as the basis for this project. I will expand upon this model by incorporating several

dietary risk factors and using the literature to refine those parameter values. This project
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holds significance since I will be able to create a mathematical model of tumor progression

which will not involve trials or lab work, but rather simulated data. Literature on this topic

suggests that there has not been a unanimous conclusion reached in regard to the effect

of such dietary factors on the progression of colorectal cancer. My research aims to use

a unique statistical approach that has yet to be seen in previous works in order to draw

a conclusion that indicates what kinds of dietary factors affect colorectal progression and

what specific tumor suppressor gene they directly impact.

2 Literature Review

Across most studies of the effect of diet on colorectal cancer, there is no single, definite

correlation that describes the relationship with a certain diet and colorectal cancer. Much

of what is included in literature is reasonable speculation, such as if you generally eat in

an unhealthy manner you may be more likely to contract colon cancer in your lifetime.

Clearly, this must be broken down further.

Colorectal cancer itself has been well-studied and modeled. Most literature models

colorectal cancer as a four or five stage model, sometimes condensed to even fewer stages

for mathematical purposes. The five stage model presented in [25] is the foundation of our

own original model. Modeling the progression of colon cancer mathematically has been

an idea present since Armitage and Doll proposed a model in the 1950s after they related

the age-specific incidence of cancer to ”rate-limiting steps” that lead to the formation of a

malignant tumor [9]. At the time, this was a simple two stage model which was expanded

upon once more research was conducted on the inactivation of tumor suppressor genes and

activation of oncogenes in the progression of cancer. Thus, this is where the idea of creating

states in a colorectal cancer model originates.

The early stages of colorectal cancer generally begin with the mutation of the APC
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regulatory pathway [25], [8], [23]. This occurs in both the chromosomal instability pathway

and the microsatellite instability pathway. The chromosomal instability pathway, however,

is more well studied as it is the pathway for most colon cancers. Hence literature is more apt

to track its progression via inactivation of tumor suppressor genes and relate it to what stage

of growth in the colon it correlates to as well as the age of the patient. With microsatellite

instability, this is not always the case. In [25], it is estimated that the remaining 15% of

CRC takes on the MSI pathway as opposed to the CIN pathway, however this is somewhat

disputed in [8] and [23] as there are other, more rare pathways proposed and specified.

The standard 85:15 proportion is still assumed by modelers and researchers as most CRC

tumors will either exhibit CIN or MSI, but not both. This means that one can conclude that

other lifestyle factors such as diet can act as an accelerant of sorts to eventual malignancy

depending on pathway. What also should be noted is that MSI is a more slow growth over

time, characterized by a sequence of small-scale events that eventually lead to a carcinoma

as opposed to CIN’s larger scale, accelerated genetic changes [23].

It remains legitimate to model either pathway by states and transitions, which thus

becomes an inherently stochastic process. In [13] a combined sequence is proposed for

both pathways. For both CIN and MSI, they observed a normal stage transitioning to an

early adenoma after many decades due to a mutation in APC and/or Wnt signaling. This

leads to an immediate adenoma after two to five years as a result of KRAS activation, or

possibly BRAF in the case of MSI. Following that comes a loss of heterozygosity for CIN

with a potential mutation in the Smad4 gene or CDC4 gene, or a CDC4 mutation for MSI.

This would occur after another two to five year period and transition into a late adenoma.

Finally comes another loss of heterozygosity in the mutation of p53 for the CIN pathway

that would lead to cancer, and a mutation for the TGFBR2, BAX, and/or IGF2R genes in

the MSI pathway. In [25] the CIN pathway remains consistent, and in both articles the

p53 mutation is regarded as a single transition due to its haplo-insufficiency. However
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[25] assumes a singular BAX mutation following a TGF mutation for the MSI pathway.

In general, most models for colorectal cancer that regard both pathways are seemingly

stochastic with their basis in transitioning states by mutations and activations of genes.

Note that although helpful in visualizing CRC progression, the moment in which certain

mutations occur cannot be thought of as being completely linear. Much literature suggests

that there are some tumors that give evidence of the absence of driver steps in pathways,

such as the absence of an APC mutation in certain tumor incidences [16], [17]. Thus with

such substantial modeling of progression and curious findings in real-life studies in tumors,

one must question what factors could accelerate or dampen the progression and how they

affect the proposed pathways.

In one example, a particular group of authors conducted a study on the influence

of diet, activity, and lifestyle on colorectal cancer. Said study found that consumption of

processed red meat was linked to mutations in tumor suppressor gene p53 [21]. However,

eight years after this study the same group of authors looked to bolster their previous claims.

In doing so, they found that their first claim was less significant than originally thought.

Rather than finding a strong correlation with high consumption of processed red meat and

p53 mutations, instead a correlation between eating a varied diet high in fiber and vegetable

intake would reduce p53 mutations and risk of colorectal cancer [19]. These two types of

diets are dubbed the ”Western” and the ”Prudent” diet, respectively.

Although claims of correlation of diet and p53 mutations are disputed, we observe a

more concise narrative when reviewing studies on the APC gene. APC plays a key role in

colorectal cancer as it is the first tumor suppressor gene to be inactivated in the progression

of colorectal cancer [25], [8], [17]. The inactivation of this gene directly leads to dysplastic

crypts in the colon. This is because the inactivation of both copies of APC leads to an

increase in the birth to death ratio in the corresponding cell, hence leading to clonal expan-

sion and subsequently, crypts. Such crypts can be directly affected by diets high in starch
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and carbohydrates. [8].

Acrylamide, in particular, is a substance present in heat-treated carbohydrate-rich

foods such as coffee, fried or baked potatoes, and various bakery goods. It has been la-

belled as a ”probable human carcinogen” by the International Agency for Research on

Cancer. Acrylamide was positively associated with colorectal cancer risk, and more par-

ticularly it was found to have activated KRAS mutations among men, but strangely, not

women. Although, similar to most current studies on diet and CRC, there is no true ”di-

rect” association with any dietary factor and CRC, but rather observations on the molecular

level lend to such logic. For acrylamide, alongside significant experimental data indicating

a carcinogenic status, it is also observed that the substance is oxidized to epoxide glyci-

damide which then creates adducts with DNA bases and hence forms mutations. Acry-

lamide and glycidamide exposure is observed to influence the hormone levels in colorectal

cells by increasing gene expression in sex hormones thereby leading to tumors circum-

venting surveilling apoptosis mechanisms [2]. However, these studies were conducted on

small scales and thus led to authors being unable to state whether or not the findings were

significant.

Such specific observations that focus more on a particular substance in diet rather

than a food group appear to have stronger, more consistent correlations. For example, a

simple specification of ”animal protein” and ”heme” versus ”red meat” produced stronger

correlations and evidence that was more solid when evaluating what genes in the CRC

process were directly affected by diet [2], [3]. Heme, the iron type that is found exclusively

in animal proteins, generated particularly interesting findings. In [3] it was observed that

there was a direct dose-response relation between heme iron consumption and colorectal

cancers with the specific DNA transition from guanine to adenine in the KRAS and APC

genes as well as the overexpression of the TP53 gene. Some contradictory results were

presented in [2], but the same authors noted that studies in the relation of animal protein
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to CRC were shown to have a positive correlation with cancer risk and high consumption.

Specifically, high intake of animal protein per 17 grams was associated with tumors in the

colon that possessed a mutation on codon 12 which is a KRAS mutation. Other notable

dietary factors presented with strong correlations in [2] are fish and vitamin A, with the

former having more variations by region, and the latter having a strong correlation with

increased risk by low consumption.

The authors of [17] used a targeted gene sequencing analysis performed on 468 col-

orectal tumor samples across 1321 different genes in which the driving role of APC in

colorectal cancer is extended to not only being the first key step in progression but also

having a formally underestimated role in prognosis. In analyzing the mutational status of

the gene, a compelling case was found for the second mutation of APC which supports the

gene’s bi-allelic nature. This idea is reinforced in both [25] and [8] that the inactivation of

solely the first copy of the APC gene does not garner phenotypic changes. This is unlike the

characteristics of genes such as p53. When the first copy of the APC gene is inactivated,

then the other copy is inactivated by an additional point mutation [8]. Additionally, this

correlates with the studies conducted in [17] in that tumors with exclusively zero or two

APC mutations had a worse chance of survival than tumors that only presented a single

APC mutation.

Perhaps the most intriguing finding of the multigene mutation classification is that

tumors lacking any APC mutation carry a worse prognosis than single APC mutation tu-

mors, however tumors with 2 APC mutations that also have mutant KRAS and TP53 confer

the poorest survival among any subgroup of tumor. Additionally, they observed that almost

30% of all tumors harbored only one APC mutation without allelic loss, most of which

were not of the microsatellite instability nature [17]. In our model, we may view this as

the inactivation of both the APC gene copies in sequential order, since the inactivation of

a tumor suppressor gene is likened to the first two mutations in the stochastic model from
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[25]. Out of all the tumor suppressor 468 tumors studied, 199 had both APC and TP53 mu-

tations, with only 1% exhibiting MSI behavior and thus this pairing would mostly correlate

with CIN. In fact, tumors with wild-type APC, rather than mutant-type APC are more as-

sociated with the MSI pathway with a strong correlation to mutations of the BRAF gene.

Tumors that exhibit MSI behavior also have a much better prognosis. From these observa-

tions of the APC gene’s behavior in tumors, it was concluded that APC usually co-occurs

with KRAS or TP53 mutations. This also suggests that APC needs to partner with one or

more driver mutations, but can still be regarded as the necessary ”first step” in the CIN

pathway [17].

Furthermore, a survival analysis indicated that 2 APC truncating mutations in the

presence of mutant KRAS and TP53 carry a substantially worse prognosis than single trun-

cating mutations, but are equivalent to tumors lacking any APC mutations. APC mutations

had a hazard ratio lower than that of KRAS or TP53 (obtained from a Cox Model), but

the increased hazard for KRAS or TP53-mutated tumors may be largely borne by patients

with both double APC mutations and APC/KRAS/TP53 mutations [17]. Since APC’s first

two copies are the first TSGs to be inactivated, and TP53 is considered to mutate alongside

APC, then we can connect these two genes through the additional KRAS gene and diet

to pose questions about how an individual’s diet may affect their progression of colorec-

tal cancer. Perhaps most crucial to consider would be the survivability of contracting the

KRAS and/or p53 mutation after both copies of APC have been mutated. Since there is

a confirmed discrepancy in prognosis outcome, we must investigate if diet improvement

between the mutations of the three genes could prolong the progression or stop it prior to

death of natural causes. Due to these relations amongst the genes, as well as dietary factors

that connect them further, the question is raised on how one can demonstrate the changes

in the APC/KRAS/TP53 dynamic as an individual’s diet fluctuates over lifetime and what

implications it may have for CRC risk.
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Aberrant crypt foci, commonly abbreviated as ACF, are considered the earliest neo-

plastic lesions in the progression of CRC and are considered a chemopreventive response to

diet [11]. They are one of the earliest premalignant lesions in the development of colorectal

cancer and show loss of heterozygosity on the 5q chromosome, which is the position of the

APC gene [9]. ACF are labeled as a biomarker for colorectal cancer risk, precede dysplasia

and single ACF are prevalent in patients under the age of 40 [18]. This finding is rather

interesting given that the general public assumption is that most instances of general cancer

appear late in the life of an individual. Thus such findings give rise to the notion that diet

quality at any given point in a person’s lifetime couId be a key factor in colorectal cancer

risk. Additionally, it is found that an increase in the prevalence of ACF is thought to be

directly parallel to the step or ”state” progression of colorectal cancer [18] which serves as

yet another verification of the seemingly natural stochastic nature of CRC progression.

It is clear that CRC can effectively be modeled using a multistage stochastic process.

Intuitively, one can think of employing continuous time with discretized states that corre-

spond to the inactivation of tumor suppressor genes or proper cell functioning. There are

experimental findings that conclude a link between diet and the progression of carcinogen-

esis, but it is unclear how this can occur on a molecular scale. It can also be concluded that

each instance of carcinogenesis is not the same as the next and although multistage mod-

eling is effective, other scenarios or alternate pathways should be considered as mutations

ultimately do not occur in a linear fashion.

3 Mathematical Model of Colorectal Cancer

When modeling carcinogenesis, a stochastic approach is one that is well-documented and

well-verified by the mathematical and biological communities. Going further, modeling

carcinogenesis in colorectal cancer is best modeled as having multiple states with certain
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cancer genes having been identified as being significant in its progression. In fact, it is

theorized that a particular codon mutation of the KRAS gene may initiate colon cancer in

humans as a whole. This naturally follows the three steps of carcinogenesis: initiation,

promotion and progression, with the KRAS mutation being the initiation step [26]. This

project shall focus primarily on tracking and analyzing the final stage of carcinogenesis,

progression, as it behaves in relation to the two former stages.

Various accepted models of carcinogenesis will express a certain amount of stages.

Such stages are defined when breaking down discrete events that lead to the eventual de-

velopment of a carcinoma. The idea of mutli-stage carcinogenesis dates back to 1954 with

the publishing of the Armitage-Doll model, a model that proposed a set of definite genetic

events were the precursor to the onset of cancer [26]. For the most part, carcinogenesis

models will at the very least consist of two stages. For some cases, one stage is deemed

sufficient as the progression to a carcinoma. The mutation or transition at hand is said to

be categorized as one singular, rare genetic event.

In this case however, we recognize that a five or six stage model is appropriate. Such

models are well-accepted. They define a ”normal cell” stage N which we can explain as

a state having 0 tumor cells. Following that we have several intermediate stages given as

I1, I2, I3 in the CIN pathway and J1, J2, J3, J4 in the MSI pathway. In this case, each

step between our intermediate stages represents the inactivation of each individual tumor

suppressor gene, or copy of one of the tumor suppressor genes. Finally, we have the final

stage T which we explain as being our tumor stage. In our model, we categorize this as

being the appearance of the first tumor cell, which applies to the models in [25] and more

generally [26].

The nature of colorectal cancer progression makes the process most logically ex-

plained by a stochastic model. When viewing the comprehensive two-pathway model of
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Figure 1: Two-Pathway Colorectal Cancer Model, Modified from Figure in [25]

colorectal cancer, it is mapped over time t with T(t) being the number of tumors at each

stage [25]. This process is assumed to be essentially Markov, as any future cell at time t

will depend on the characteristics of the current cell at time t, with no dependance on on

its past behavior. Also note that the mutation rates are extremely small and that the birth

rates are greater than the death rates [26]. Thus, a stochastic model will fit the progression

of colorectal cancer. Such rates are displayed in Figure 1, modeling the two pathways of

colorectal cancer. Also note that biologically, stem cells follow a nonhomogeneous Feller-

Arley birth-death process for their proliferation. Under the aforementioned assumptions,

we then have a continuous time process.

We import the rates given in [25] for birth, death, mutation, and proliferation. Then

we set a maximum number of simulations and compute the appearance of the first cell in the

tumor cell. From here, we create our update matrix, which is formulated by the following:

the number of rows is equivalent to the number of transition events, with the number of

columns being our five possible states. For the CIN pathway, we account for four mutation
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events, three birth events, and three death events, making for ten transition events in total.

In the case of MSI, we assume six states, so this would equate to five mutation events,

and four birth and death events respectively totaling thirteen rows. In both cases, this is

followed by implementing the Gillespie Stochastic Simulation Algorithm.

Using the statistical programming software R, we proceed to accurately reflect the

carcinogenesis model proposed in [25] while adding time-varying mutation rates. This

model shall act as a reflection of age and diet. The model proposed here was a stochastic

model developed using muti-level Gibbs sampling developed from SEER (Surveillance,

Epidemology, End Results Program) data for cancer incidence in the United States. Thus,

we use the SEER incidence data and its division by age group, as well as the mutation,

birth and proliferation rates from [25]. In using this as our base model, we are able to make

conclusions about the relations between cancer, age, and diet in the United States.

Building the simulation, it would be ideal to set the number of healthy cells at ten

billion, defined as N = 10000000000. The number of cells in the colon is very large as

one may guess, with 1,000 to 4,000 cells per crypt and about ten million crypts in total [16].

However, such a large number is computationally infeasible with our model, thus we will

focus on a smaller scale and discuss how to interpret the results in relation to the full size of

the colon. The simulation uses the Gillespie Stochastic Simulation Algorithm and employs

the rates given in [25]. Mutation and birth rates are given outright along with death rates,

however, death rates are not directly employed. Rather, proliferation rates defined as pi

are utilized and are given from the death rate subtracted from the birth rate for each stage.

Taking all these rates directly, we define this as being our Constant Rate Model for both the

CIN and MSI pathway.
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3.1 Chromosomal Instability Pathway

When studying the chromosomal instability pathway, we account for three tumor suppres-

sor genes along the progression. Such genes are the APC gene, KRAS gene, and the p53

gene, in that order. In Figure 1, these are defined as our ↵I
i s - however it should be noted

that KRAS and p53 are combined into a singular mutation rate while APC is left as two

separate mutation rates for two different copies of the gene - ↵I
0 and ↵I

1 respectively due

to haploinsufficiency. This occurs when the first copy of the gene is inactivated, then the

second copy is not sufficient enough to produce the standard phenotype. In plain terms, if

the first copy is taken out in the process then the second copy is irrelevant [25]. Thus, we

use a single mutation rate to represent both Smad4 and p53, additionally this condenses the

number of stages in our model from potentially seven stages to five.

APC is identified as one of the most crucial steps in colorectal cancer carcinogenesis

as it is quite literally the first step in progression, it is found in eighty percent of all tumors

in the colon, and heterozygous mutations construct an autosomal predisposition for humans

for dominant colon cancer [17]. APC is also largely believed to pair with KRAS mutations

as well as p53 mutations. KRAS mutations are found in 35-45% of colorectal cancers while

p53 mutations are found in 35-55% [24]. These findings are relatively consistent across all

studies and literature.

The pathway in [13] and the “Vogelgram” in [16] correspond to a general sequence

of an APC mutation, KRAS activation, some other genetic, molecular, or environmental

events, and finally a TP53 mutation. This is similar to the model in [25] with the only

difference being a Smad4 mutation occurring prior to TP53 inactivation. We aim to bridge

the “environmental factors/molecular changes” [24], [2], [13] gap in the understanding of

the CIN pathway through our incorporation of diet as a risk factor. Although other genes

have been mentioned in the pathway to colon cancer and cited as being present in tumors,
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we can exclude them and focus on the key players APC, KRAS, and TP53. Vogelstein

simplified the model of CRC in this fashion due to the fact that each of these genes is

associated with a major cell signaling pathway [16], [4] - this logic was followed in [25].

Additionally the study in [17] indicated that these three genes remained the most frequent

in their tumor study with Smad4 being the fourth most frequent. Since these genes are

the most documented due to their frequency, they are also among those most studied with

correlations to dietary factors [21], [2].

As one can assume, such frequencies of mutations imply that this pathway of col-

orectal cancer may be consistent and linear in cases that progress to full malignancy, but

will vary otherwise. In [17], 468 tumors surveyed did not always have mutations in these

three genes. Other studies support this, in one stating that in their cohort study that about

60% of tumors had APC and TP53 mutations not cooccurring [1]. This suggests that there

are alternate orderings in the CIN pathway. There is a very limited KRAS-first potential

to progress to a full carcinoma, with the APC-first route having the highest potential to

reach tumor status first [6]. Thus, we want to study if dietary factors that have been linked

to these tumor suppressor genes and KRAS will change the order of mutations and hence

accelerate or decelerate the progression of the CIN pathway.

Due to the large amount of literature on KRAS mutations, we regard the I2 state as

a generalized ”intermediate state,” deviating slightly from the logic used in [25]. This is

reasonable given the ambiguity in research of intermediary steps in the CIN pathway. The

rates given in Tan and Yan’s study, after all, were taken from Luebeck and Moolgavkar’s

2002 SEER data study and even used exact rates from that study. The difference between

the two studies is that Luebeck and Moolgavkar left the two events following the APC

mutations as ambiguous, potentially epigenetic events [9]. In other models as well, there

appears to be an agreement on APC mutations being the first stage and p53 mutations

being the final stage, so we can use this model to explore different scenarios based on what
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Figure 2: Biological Progression of Chromosomal Instability Pathway, Supported by [13],
[6]

occurs in etween. From here, we can draw up different scenarios and compare against the

CIN Constant Rate Model.

3.2 Microsatellite Instability Pathway

The microsatellite instability pathway of colorectal cancer is a sequence of more rare, spo-

radic events. For this portion of our model, we will craft our simulation somewhat differ-

ently as the way that MSI appears in tumors in real life is different to that of CIN occur-

rence. MSI in itself is caused by mutations in DNA mismatch repair genes, which in turn

causes the microsatellites to change their own length at an unprecedented higher rate [23].

As we know, the MSI pathway occurs less frequently than the CIN pathway. The MSI

pathway is can also be broken down further by other attributes such as HNPCC and the de-

gree of instability, but this categorization is part of ongoing studies and most mathematical

models such as that in [25] simplify CRC down to CIN or MSI. This makes sense in that
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tumors can either have CIN or MSI but not both [23].

Figure 3: Biological Progression of Microsatellite Instability Pathway, Supported by [13],
[27]

Similarly to the CIN pathway, many sources try to linearize the progression of can-

cer via the MSI pathway. While CIN has a handful of identifiable, singular mutations at

each step, MSI is regarded as having more mutations and more possibilities of signaling

being disrupted. Some sources differ slightly on the types of mutations occurring at each

stage, but not at which instance they occur such as in the case of the TGFBR2 mutation

[25], [27], [13]. Additionally, hereditary CRC is characterized by MSI and the pathway

altogether is associated with post-replicative DNA mismatch repair deficiency [13]. This is

potential reasoning as to why the MSI pathway in literature is explained in a few different

ways with varied mutation checkpoints. These changes to normal-functioning proteins and

signaling pathways are smaller in scale than the changes of the CIN pathway (see Figures

2, 3). Therefore in building our model, it is also important to note how MSI may behave

differently over time. For one, its ties to DNA process disruption and familial inheritance

could mean an earlier detection in a patient, as MSI has better prognosis and survival in
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patients [15]. To maintain consistency with the previous SEER data, we will accept the

number of stages in the MSI pathway as six, as stated in [25], but we still notice that the

events that occur at each stage may be more ambiguous than that of the CIN pathway and

account for this in our dietary modeling (see Figure 1). We will account for six official

discrete states, with five mutation events ↵j , four birth events bj and four death events dj .

Clearly, the CIN pathway becomes more of a focus when incorporating dietary fac-

tors or studying the speed of carcinogenesis in CRC because of the different origins and

effects of the pathways. It is also known that prognosis for MSI is better than that of CIN

[17]. Other than this general knowledge and the link to mismatch repair, causes of MSI

are unclear [20]. However, this does not mean that lifestyle factors are completely unre-

lated to the progression of the MSI pathway. In a large population, a case control study

found that long term alcohol use was associated with patients having more MSI tumors

[20]. Note that this study is one of few piece of literature that statistically confirms such a

correlation, and also reinforces the mysterious nature of MSI and its causes. We also know

that the KRAS mutation is said to occur in the MSI pathway as well [13], [25]. We will

use this information to explore an accelerated model based on the KRAS ”step” in the MSI

pathway.

3.3 Dietary Factors

When we discuss diet and cancer, we must take in to account the fact that most individuals

do not have a completely consistent diet over the course of their lifetime. For example, one

individual may have a rather unhealthy diet in their adolescence and make strides to eat

healthier as they age. Since mutations within the APC gene as well as biological predeces-

sors such as ACF are strongly associated with diet, we are motivated to create a model that

reflects changes in diet over time. Therefore we proceed by creating additional chromoso-
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mal instability pathway simulations that incorporates reasonable changes from a good diet

to a bad diet at a given points in a person’s lifetime. We also will want to reflect consistent

diets that may be more extreme cases in order to test the effect it may have on CRC car-

cinogenesis. In order to do this, dietary factors with substantial ties to certain points in the

multistage process will be the most effective way to model this connection.

Table 1: Description of Dietary Factors in the Model.

Dietary Factor Description References

Red meat or heme

Positive correlation with APC,
KRAS, and p53 mutations,

with a focus on KRAS
and p53 due to

consistency in literature.
Can toggle the first

mutation between APC or
KRAS in the CIN pathway and
increase proliferation rates of

the intermediate states.

[21] [2] [3] [22]

Vegetables

High vegetable intake has negative
correlation with KRAS mutations.
Decreases proliferation rate of I2

and toggles the first mutation
in the CIN pathway.

[19] [2]

Alcohol

Long term intake associated
with higher amount of MSI

tumors, positive correlation with
KRAS mutations in CIN pathway.
Accelerates mutation rates in MSI

pathway and increases proliferation
rate of I2

[20]

Processed meat consumption showed an increased risk of APC mutations in a cohort

study [22]. Red meat consumption showed an increased risk of KRAS mutations [3], [2]

as well as TP53 mutations [21]. Associations with APC and TP53 are still disputed, thus

through our simulation we plan to hypothesize if red meat could accelerate the progression
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of CRC through the CIN pathway. Consumption of vegetables showed a negative associa-

tion with KRAS mutations [2], [19] due to their richness in fiber and flavonols which inhibit

nitroso compounds from forming (these will cause a base transition normally). Another

study found that low consumption of vegetables was found to have a positive association

with KRAS mutations [2]. Thus we can use KRAS as a point of reference for the Western

vs. Prudent diet discussed in [19].

Ethanol is a widely confirmed mutagen and its metabolites within the human liver are

considered carcinogenic. Thus, alcohol becomes a factor in any human cancer. In one case

the results of a case control study suggested that long-term intake of alcohol is associated

with a 60% increased risk of having a CRC tumor with MSI, particularly in the case of hard

liquor consumption [20]. Note that this study did not focus on alcohol, but rather assessed

several factors, and alcohol had the strongest correlation with MSI. For CIN, a cohort study

suggested high lifetime alcohol intake made one more likely to have a tumor that possessed

a KRAS mutation [12].

In regards to literature on a direct correlation between an individual’s diet and their

mutation, birth, death, or proliferation rates of the cells involved in carcinogenesis path-

ways, there have been no exploratory studies on the matter. However there have been

suggestions in research on how this may occur. This includes the idea that an ”accelerated”

mutation may be the necessary step to aggressive colorectal cancer [23]. Thus, we can

ponder conservative and extreme cases of dietary fluctuations in an individual and how that

may affect various rates in their carcinogenesis progression. It would then follow to set an

acceleration, or in the case of vegetables, a deceleration factor using the non-quantitative

associations found in literature as a basis.



19

3.4 Assumptions

In terms of building the general pathway of carcinogenesis for our model, we assume N

normal cells beginning at time t0, with N large in regards to the epithelium. Consider the

time interval [t, t + �t]. Then the probability that a normal cell at time t produces one

normal and one mutated cell at time t + �t is ↵i(t)�t + o(�t) with lim�t!0
o(�t)
�t

= 0,

for any ↵i or ↵j with i, j > 0.

Both the normal stem cells and mutated cells follow a nonhomogeneous general birth

and death process with rates bi(t) and di(t) for the chromosomal instability pathway, and

rates bj(t) and dj(t) for the microsatellite instability pathway as shown in Figure 1. This

notion of a birth death process preserves the Markovian nature of the state transitions.

The birth, death, and mutation processes are all independent of one another. Additionally,

each cell will behave independently of another cell. This logic was adopted and edited from

Tan’s stochastic modeling in [26]. Note that a Feller-Arley or Glompertz birth death process

can be applied instead of a generalized one that inherently fits stochastic processes, but for

the sake of simplicity and retaining the focus on diet we use the notion of a generalized

birth death process.

Our model is a continuous time Markov chain. For example, in the CIN pathway, we

know that we are accounting for the transitions between states as the APC, KRAS, and p53

mutations, respectively. Thus this yields a Markov chain matrix (triangular) that represents

any possible case at time t of either pathway. This and the birth-death process to represent

cells replicating and dying are the two key pillars of our model. We generate the rates of the

different types of events (mutation, birth, death) by multiplying them to the update matrix.

We calculate the total rate of an event happening, r, with the time to the next event being

an exponential random variable with rate r. Then we generate a probability vector for each

type of event and sample what kind of event occurred. Using this information we are able
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to store the updated time and state variables in a new row of the update matrix. Finally we

generate the time in which the first cell reaches the final state T . From here we are able

to plot the data, analyze the movement of cells through the stages and perform statistical

testing for interpretation.

For the CIN pathway, accepted state-transition models will almost always include

the TSGs APC and p53 and the oncogene KRAS. Note that in some models such as that in

[25] the protein Smad4 is considered as an intermediate step, and in [4] the gene PIK3CA

is considered. In many instances, other genes that are not as consistently mentioned are

grouped together as ”other genetic events” such as that in [16]. Recall that APC, KRAS,

and p53 are the most commonly mutated in CRC [17] and are the most tested for dietary

influences in literature [2], [21], [19], [20], [3]. For these reasons, we only consider these

three genes as the transitional steps in our model of the CIN pathway.

In terms of diet, we use the mutation rates for each gene as a way to represent an

acceleration or deceleration of carcinogenesis in colorectal cancer. As we have covered,

the explicit relation between a mutation rate of a cell and dietary habits is not known.

However, the variation of rates and range of mutation rates has been discussed and we will

apply such knowledge to our model. A mutation rate in the context of tumor suppressor

genes and oncogenes is said to vary by 102 [4]. In a study of mutations and selection in

sporadic cancers, results in [14] suggest that there is a ”set” mutation rate and once two

MMR (CIN) mutations occur, then the original set rate increases by some factor. In these

results, the rate of increase was given by being in the range of 10 or 104. Vogelstein’s

findings of rate variation fall into this range as well. We can equate this statement to

having the two APC mutations occur and then have the KRAS and p53 mutations affected

thereafter.

Thus we make the following assumptions about mutation rate variation and diet in
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our CIN model: we consider an extreme case of dietary habits and increase or decrease

the mutation rate for KRAS of 104, and the rate for p53 by 102 from the Constant Rate

Model. We will also create two time-varying models, one with random oscillation added to

↵2 and ↵3, and another with random oscillation added solely to ↵3. The former represents

a conservative version of varying levels of red meat, vegetable, and alcohol intake, and the

latter focuses on red meat intake. To define these scenarios, consider an individual with

frequent bouts of high red meat and alcohol intake over their lifetime (what some may

call a ”poor” diet) and a lack of vegetables, with realistic recovery periods in between that

consist of a more balanced diet.

With KRAS-related dietary factors identified, we consider the alternate pathway of

CIN progression considered in [6]. Recall that most CIN cancers have mutations occur

in APC, KRAS, and p53 in that order. The results in [6] proposed that for a third of

the occurrences of CIN carcinogenesis, KRAS preceded APC. We want to test using the

proposed variation factors in the above paragraph to test if diet would affect the possibility

of a KRAS preceding an APC mutation and if this would yield a faster progression to a

carcinoma or prevent a carcinoma from developing in an individual’s lifetime, as suggested

in [17]. The probability of one CIN progression versus another would also be represented in

the Markovian matrix built in to our simulation. Note that it is suggested that there are other

sequences for CIN carcinogenesis besides having mutations in APC first, KRAS second,

and p53 last, and the case with APC and KRAS switched. These include progressions

where p53 precedes APC and so forth. However, these are very rare (less than 3% likely)

[6].Thus, we exclude the rest of the cases besides the sequences of APC, KRAS, p53 and

KRAS, APC, p53. From here, the first two gene mutations will act as a toggle switch based

on the probability matrix and dietary factors.

To explore the factor of alcohol on the MSI pathway, we will accelerate ↵2 by a factor

of 20% and the subsequent mutation rates ↵3 and ↵4 by 10%, mimicking the accelerations
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proposed for the CIN pathway by Vogelstein, but in smaller shifts. We are using smaller

factors of acceleration in this case because there are no exploratory studies regarding the

direct affect that diet may have on the mutation rates of the MSI pathway. Since such

options have not been accounted for, the experimental data we generate from this pathway

will serve as a clue to confirm or deny a potential link between the MSI pathway and diet

despite its origins being less ”sporadic” than that of the CIN pathway.

Assuming 1000 cells per crypt at 107 crypts in the colon, we have an estimate of

1010 cells in the colon [16]. For both CIN and MSI, we use a base model that is a direct

simulation of the model given in [25]. From here, we expand on this and create a simulation

of the toggle-switch alternate CIN pathway, the KRAS-first pathway, time varying models,

and accelerated models in CIN. We also create an exploratory accelerated model for MSI.

This in turn will make for a comprehensive study in simulating a human colon and several

different scenarios given by an individual’s diet. From here we use the multistage model

via the Gillespie Stochastic Simulation Algorithm and keep track of years it takes to reach

the first cell in the final tumor stage in any case.

4 Results

All simulations were run for N = 1, 000, 000 normal cells and k = 100 simulations

each per scenario. The number of normal cells set is an estimate of the amount of cells in

a fraction of the real human colon. As we know, the real number of cells in the colon is

ten billion. Since this would lengthen computation time of the simulation, we conducted

a few benchmarking simulations with ten billion cells to verify the orders of magnitude in

order to create a real time scale for the scenarios. The chosen amount of simulations is to

generate enough data for proper statistical analyses. We built the model to use real units of

time, in this case years. Thus in a square centimeter of a colon, which is about what one
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million cells represents, we are able to scale and create a real time frame of how long it

would take the individual to develop cancer.

4.1 Chromosomal Instability Pathway

4.1.1 Constant Rate Model

For the constant rate model for the CIN pathway, we lifted the mutation, birth, and death

rates from Tan & Yan’s 2010 study [25]. No additional adjustments were made to them. We

classified three birth events, three death events, and five mutation events for this pathway

- making the pathway the standard five stage, APC-first common occurrence of colorectal

cancer. This will be used as our base control model for comparison to the other CIN models

listed below.

Figure 4: Movement of cells through states for CIN Constant Rate Model, n = 1000000
cells, k = 100 simulations
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Figure 5: Scatter plot of first tumor instance for CIN Constant Rate Model, n = 1000000
cells, k = 100 simulations

Figure 6: Histogram of First Tumor Instance for CIN Constant Rate Model, n = 1000000
cells, k = 100 simulations

Our mean time to reach the first tumor cell was 664.681. Thus, with one million

cells, it takes on average this long in years to reach the tumor state. If you scale this down

by orders of magnitude, in this case 104 as this would place us near the number of cells in
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the real human colon, then this mean would actually be close to around 100 years, meaning

that the individual would most likely not get cancer in their lifetime. This correlates with

real life occurrence. It is also important to note the distribution here, which appears to be

an almost gamma-type distribution.

4.1.2 Toggle Switch Model (KRAS First)

To simulate the KRAS-first version of the CIN pathway, we rearranged the order of the

pathway to use I3 as the first state, such that the pathway in sequential order is as follows:

N , I3, I1, I2, T . This is so that the first mutation rate occurring is ↵2 which corresponds

with the KRAS mutation rate. Additionally, mutation rates were increased by a factor of

102 for each so that the KRAS-first pathway would be equalized in comparison with the

APC-first pathway.

Figure 7: Scatter plot of first tumor instance for CIN Constant Rate Model, n = 1000000
cells, k = 100 simulations
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Figure 8: Histogram of First Tumor Instance for CIN Constant Rate Model, n = 1000000
cells, k = 100 simulations

For the KRAS-first CIN pathway, our mean time to reach the first tumor cell was

163.36. We use this scenario to explain our dietary factors that have direct connections

with KRAS. Say for instance, an individual has extremely low vegetable intake paired with

extremely high red meat/heme intake throughout their lifetime. This result suggests that

this could speed up the CIN-type carcinogenesis and change the order of the pathway as a

whole.

4.1.3 Time Varying Model

Our time varying model added random oscillation to mutation rates to ↵2 and ↵3. This

represented a mild fluctuation in red meat and vegetable intake over time, since these mu-

tation rates are for KRAS and p53. To give a more realistic sense of this scenario, assume

an individual frequently eats high amounts of red meat and lacks vegetables, however, they

have off periods where they opt for a better diet in between, one with higher vegetable and

less red meat intake. We consider this to be a mild case of poor dietary habits. The rates
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were varied by creating a low-end constant rate by multiplying the rate by 0.1, creating a

high-end rate by multiplying the rate by 1.9, and then drawing a uniform random variable

over time from this range for both ↵2 and ↵3.

Figure 9: Time Varying Rate for ↵2

Figure 10: Time Varying Rate for ↵3
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Figure 11: Scatter plot of first tumor instance for CIN Time Varying Model, n = 1000000
cells, k = 100 simulations

Figure 12: Histogram of first tumor instance for CIN Time Varying Model, n = 1000000
cells, k = 100 simulations

As we can see, the distribution is a normal one, with a mean time to the first tumor
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state of 626.06. Clearly this is not too far off from the Constant Rate Model. To focus on

a fluctuating diet in terms of solely red meat, we use the same methods but only apply a

time-varying rate to p53’s mutation rate. We obtain the following results:

Figure 13: Scatter plot of first tumor instance for CIN Time Varying Model for ↵3, n =
1000000 cells, k = 100 simulations
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Figure 14: Histogram of first tumor instance for CIN Time Varying Model for ↵3, n =
1000000 cells, k = 100 simulations

We obtain a mean time of 654.777, even closer to our Constant Rate model.

4.1.4 Accelerated & Rate Model

We created an accelerated version of the CIN constant rate model by increasing the muta-

tion rate of KRAS/the intermediate state (↵2) by 103 and the mutation rate for p53 (↵3)

by a factor of 10. This ensures that we are creating a realistic, cascade-like scenario of

an extremely poor diet represented by such rates. In this case, consider an individual with

longtime and frequent use of red meat and alcohol, while having a diet almost completely

devoid of vegetables.
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Figure 15: Scatter plot of first tumor instance for CIN Accelerated KRAS/p53 Model, n =
1000000 cells, k = 100 simulations

Figure 16: Histrogram of first tumor instance for CIN Accelerated KRAS/p53 Model, n =
1000000 cells, k = 100 simulations

As expected, this scenario yields a much quicker mean time to the first tumor cell.

During this simulation, we obtained an average time of 167.649. This in turn shows
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that more rapid mutating at a molecular level will certainly increase the progression to

carcinogenesis, even if the mutation rates remain rather small.

4.2 Microsatellite Instability Pathway

4.2.1 Constant Rate Model

Similarly to our CIN model, we again adopt the rates given in Tan & Yan’s 2010 study and

create a six stage model for the MSI pathway [25]. In this case we have four birth and death

events respectively and five mutation events. This is the standard, accepted version of the

MSI pathway with no adjustments made to the rates and will act as a control group just like

in the case of CIN.

Figure 17: Scatter plot of first tumor instance for MSI Constant Rate Model, n = 1000000
cells, k = 100 simulations
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Figure 18: Histrogram of first tumor instance for MSI Constant Rate Model, n = 1000000
cells, k = 100 simulations

Note the clear normal distribution. Additionally, the mean time to the first tumor cell

was 646.232 in this case which is close to our CIN model. Thus this confirms that both

control groups behave so that they have a similar end result and thus can be used as a means

of comparison.

4.2.2 Accelerated Rate Model

In the case of an accelerated MSI pathway, we consider a diet consisting of excessive and

frequent alcohol consumption. We count this as another ”extreme” scenario in which an

individual has an undoubtedly poor diet. In this case we increased ↵2 by a factor of 103

and the two following mutation rates by a factor of 10, similar to the CIN accelerated

model. Again these rates were chosen in order to exhibit real life extreme fluctuations of

mutation rates. ↵2 in particular was chosen as the base rate to be increased because this is

the mutation rate for KRAS in the MSI pathway in accordance with the base model.
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Figure 19: Scatter plot of first tumor instance for Accelerated KRAS Model, n = 1000000
cells, k = 100 simulations

Figure 20: Histrogram of first tumor instance for MSI Accelerated KRAS Model, n =
1000000 cells, k = 100 simulations

In this case we observed a mean time of 135.87. The shorter time length corresponds
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with real life MSI progression and confirms the findings of Slattery et. al - KRAS-linked

mutations brought on by alcohol could speed up the process of carcinogenesis [20].

5 Discussion

5.1 Summary

Table 2: Quartile Summary of Results.

Case Min 1st Quartile Median 3rd Quartile Max
CIN Constant 365.278 619.523 676.696 712.592 839.105
CIN KRAS 56.918 133.136 166.36 194.774 235.605

CIN TV (both) 371.059 563.266 633.291 692.425 879.283
CIN TV (a3) 289.938 615.22 662.0199 719.259 926.305

CIN Accl 37.754 130.827 171.757 202.910 293.862
MSI Constant 312.016 591.168 643.166 703.770 892.084

MSI Accl 45.91 111.027 133.158 159.025 234.751

5.2 Conclusions & Statistical Analyses

From the results we have obtained, we can conclude that a mildly poor diet, or some fluc-

tuations towards a bad diet, will not affect one’s progression to the final state of carcino-

genesis, assuming the CIN pathway. There is a 6% increase in the time it takes to the first

tumor cell in the Time Varying Model as compared to the Constant Rate Model. However,

the time to the first tumor cell is 75% slower in the Constant Rate Model than in the ac-

celerated model for the CIN pathway. In comparing to the KRAS-first model, the Constant

Rate Model was again about 75% slower. Thus, more extreme changes in diet will truly

accelerate the CIN pathway.

As for the MSI pathway simulations, we can say the same - extreme excess of alcohol

consumption will accelerate the progression to carcinogenesis. More specifically, the time
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to the first tumor cell is 80% slower in the Constant Rate Model than in that of the Acceler-

ated Model. At this point, we can infer that more extreme poor dietary habits, specifically

those involving consistent and high consumption of red meat and alcohol, will certainly

accelerate the progression of CIN and MSI-type colorectal carcinogenesis as a whole on a

molecular scale. This is specifically via the corresponding mutation rates.

Additionally, performing an unpaired t-test comparing the Constant Rate CIN Model

to the Time Varying Model incorporating both ↵2 and ↵3 yields a t-value of 2.9452. As-

suming p = 0.05, we reject the null hypothesis and still conclude that there is significant

difference between the two models. In comparing the Constant Rate Model against the

Accelerated Model, we have a t-value of t = 49.9277, obviously allowing us to reject the

null. Against our other extreme scenario, the KRAS-first model, the test statistic was also

a very high value of t = 53.0732 which of course gives the same conclusion. Interest-

ing, though, is the result for the Time Varying Model for strictly ↵3, which yielded a test

statistic of t = 0.7541. With k = 100 simulations, we fail to reject the null. In terms

of diet, this could mean that one dietary factor with mildly increased or fluctuating intake

is not enough to completely change the outcome of colorectal carcinogenesis. A t-test was

performed to compare the MSI Constant Rate and Accelerated Rate Models as well. This

had similar results to our CIN pathway with a test statistic of t = 47.7837. The test

statistics of our extreme diet scenarios indicate highly statistically significant results. This

further validates our other findings in regards to poor and consistent dietary choices.

As we can see, there is a slight shift in what should be a normal distribution for

the Constant Rate CIN Model. Performing a Kolmogrov-Smirnov Test yielded a KS test

statistic of D = 0.089965 and a p-value of p = 0.3932, which confirmed that the

Constant Rate model did not differ from a normal distribution. Performing this test on the

KRAS-first pathway yielded a similar result of D = 0.089676 and p = 0.3972. As for

the Time Varying Models, we obtained D = 0.096665 and p = 0.3075 for the model
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accounting for two mutation rates, but D = 0.13823 and p = 0.04379 for the model

that varied ↵3 only. As with the t-tests for this model, this result is variant of the rest within

the CIN models. This is not normally distributed, therefore the KS test was used again to

test for a gamma distribution, in which we obtained D = 0.12014 and p = 0.1115.

This is our sole model that exhibits a gamma distribution. The CIN Accelerated Model

exhibited results of D = 0.051401 and p = 0.9543. The MSI Constant Rate Model

gave a test statistic of D = 0.066258 with p = 0.7723 and the accelerated version gave

D = 0.046474 and p = 0.9822. Thus, we can assume that the rest of the models are

normally distributed, verified as such by the KS test, with fairly good fits for each as the

test statistics are values fairly close to zero.

Most of our scenarios exhibited similar results, with our more extreme dietary sce-

narios having the highest statistical significance and consistent normal distributions when

testing the time it took to get to the first tumor cell. Specifically, the pathways can be

significantly accelerated in its progression by high and consistent intake of red meat and

alcohol. Colorectal carcinogenesis can also be accelerated by a significantly low vegetable

intake over one’s lifetime, as verified by our KRAS-first results. Due to the outcome of

our Time Varying Models, we can say that even at a milder scale, a combination of poor

dietary factors that can directly affect two or more mutation rates can still accelerate the

progression, but by a very small factor. However, because of our results in the Time Vary-

ing ↵3 scenario, we can reasonably conclude that mild fluctuations in red meat alone will

not accelerate carcinogenesis - a finding that explains previous results in literature about

the questionable significance of red meat intake and CRC.
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5.3 Future Work

Since we observed some close results indicating that a combination of dietary factors may

continue to change the results, in the future we may want to incorporate even more di-

etary factors with more fluctuations in mutation and possibly proliferation rates along these

pathways. In this project, based on the literature we expected to not have significant results

for the MSI pathway in regards to diet. However, given the similarity between the various

models in both pathways, and the confirmed effect with accelerated mutation rates, perhaps

more exploratory studies on MSI and diet will be useful to create a more comprehensive

view on CRC, despite the fact that some literature believes MSI to be solely epigenetic in

behavior.

In general, the next step in this study would be refining simulations to account for

the entire colon. Using external packages in R software, such as those that speed up the

Gillespie Stochastic Simulation Algorithm, would be ideal for this matter. The simulations

can be further adjusted to account for the dietary ”combination” scenarios. Additionally,

the established factors such as acceleration and random oscillation can be applied to more

rates than the ones that were studied for these models.
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